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Abstract (long version) 

The azimuth/elevation (cross-range) resolution of a bat or dolphin sonar is theoretically much 
worse than its range resolution at ranges of one-half meter or more. Synthetic aperture sonar 
(SAS) processing can be used to improve cross-range resolution by summing echoes from the same 
target point as seen from different relative positions of the sonar and target. Dolphins and bats that 
transmit broadband, frequency modulated signals use Doppler tolerant waveforms and may be 
incapable of pulse-to-pulse coherent processing. A relevant form of SAS involves Doppler 
tolerant, noncoherent delay-and-sum processing, and it is similar to back projection tomography. 

Another technique for improving cross-range resolution is to scan the environment with 
multiple, overlapping beams from a single sensor position, and to solve the resulting set of 
simultaneous equations for the reflectivity of each point (beam pattern deconvolution). Both beam 
scanning and translational motion are observed in animals. Beam deconvolution and SAS can be 
combined in a sonar processor that forms an internal model of the environment and that updates 
this model by comparing it with echo data. This updating method is known as the algebraic 
reconstruction technique (ART) in medical imaging applications, and it is equivalent to gradient 
descent for solving deconvolution (sharpening) problems. Simple, biologically feasible versions of 
back projection SAS and ART-SAS can form images of reflectivity and other target features as a 
function of range, azimuth, and elevation. The resulting reflectivity and feature images are used to 
explain how dolphins find buried fish. 

ART-SAS can be implemented with a gradient descent optimization process that uses top- 
down, bottom-up processing. This processor obtains high resolution target representations from 
low resolution, nonlinear signal representations, and it can be used to generalize spectrogram 
correlation models to explain bats' apparent pulse compression capability (matched-filter 
equivalent processing). Gradient descent parameter estimation can be combined with a target 
classifier that uses associative memory. The resulting associative gradient descent process has fast 
convergence and avoids spurious local minima. Gradient descent top-down, bottom-up processing 
compares low-resolution versions of sensor images (as in the superior colliculus) with low- 
resolution (deliberately degraded) versions of a high-resolution image model. The high-resolution 
model is updated via the error generated by the low-resolution comparison. Although conventional 
image sharpening operations (Laplacian, 2-D high-pass, lateral inhibition) operators are not 
precluded by this process, they seem to be unnecessary. 

A software implementation of the biologically inspired acoustic imaging system is used to form 
conventional images and feature images of mines that are ensonified with a dolphin-like pulse. 
Some of these images are formed with very sparse aspect sampling, corresponding to area coverage 
rates that are at least an order of magnitude larger than the area coverage rates of conventional 
SAS systems. This improvement is associated with bionic, nonlinear suppression of artifacts 
associated with SAS point spread function sidelobes, and with tolerance to aspect dependent phase 
changes induced by physical scattering mechanisms. 

Motion compensation and adaptive focusing are obtained with an image-based tracker, which is 
a requirement for a biological system that pursues and images prey simultaneously. Image-based 
tracking accomplishes motion compensation and adaptive focusing by utilizing sequentially formed 
test images together with an image evaluation criterion. The tracker can incorporate both 
translational and rotational motion. 



Table of Contents 

Section Page 
1.   Introduction 5 
2.   Doppler-based SAS 5 
3.   Doppler tolerant, tomographic SAS 6 
4.   The range, cross-range ambiguity function (SAS point spread function) 8 
5.   Comparison of biologically inspired SAS with conventional SAS 9 
6.   The algebraic reconstruction technique (ART) 

and top-down, bottom-up processing 
13 

7.   Biologically inspired techniques for accelerating a gradient descent 
algorithm and finding a global minimum - associative gradient descent 

16 

8.   Top-down, bottom-up gradient descent and inverse filtering 16 
9.   Top-down, bottom-up gradient descent and pulse compression 

with spectrograms 
18 

10. Top-down, bottom-up ART-SAS processing and beam deconvolution 21 
11. Tracking and motion compensation with top-down, bottom-up 

ART-SAS processing 
21 

12. Top-down, bottom-up gradient descent with low resolution 
neuronal maps 

21 

13. Top-down, bottom-up gradient descent and hyperacuity 22 
14. Feature images 23 
15. The volume clutter feature image 24 
16. The rough/smooth feature image 25 
17. Motion-based feature images 25 
18. Image-based tracking 27 
19. Motion compensation, dynamic programming, and dynamic models 28 
20. Image models for motion compensation 34 
21. Image-based tracking and the 2D target distribution invariance 

assumption 
34 

22. Summary of adaptive focusing and motion compensation via 
image-based tracking 

35 

23. Biological feasibility of simplified SAS 36 
24. Coherent SAS 37 
25. Summary and conclusion 38 
26. References 38 
Appendix A:   Back projection and synthetic aperture processing 41 
Appendix B:   Cross correlation of proportional bandwidth 

spectrograms for wide-band signal processing 
46 



List of Figures 

Figure Page 
1.   Synthesis of a synthetic array by a moving sonar sensor 7 
1.   An example of a SAS point spread function (range, cross-range 

ambiguity function) 
8 

2.   An example of aspect dependent phase shifts: The impulse response of a 
tilted metal plate seen from opposite directions (phys. optics approxn.) 

10 

4.   Comparison of images from four different SAS processors; 
four degree aspect sampling interval 

11 

5.   Comparison of images from four different SAS processors; 
twenty degree aspect sampling interval 

12 

6.   Comparison of biologically inspired SAS images obtained by back 
projection (delay and sum) processing and ART processing 

15 

7.   Traditional model of the peripheral auditory system at frequencies 
above five kHz (spectrogram representation with critical intervals) 

18 

8.   Pulse compression via top-down, bottom-up processing 
of the echo spectrogram 

19 

9.   Interaural delay estimation via top-down, bottom-up processing 
of echo spectrograms 

20 

10. Recognizing holes in clutter with a volume clutter feature image 24 
11. Composite rough/smooth feature images of four mines 

(four degree aspect sampling interval) 
26 

12. Composite rough/smooth feature image constructed from 18 echoes 
taken at an aspect sampling interval of twenty degrees 

26 

13. Block diagram of an image-based tracker for motion compensation and 
adaptive focusing of biologically inspired SAS systems 

29 

14. Demonstration of adaptive focusing for a wobbling, rotating target 30 
15. Demonstration of adaptive focusing for an artificially induced delay 

perturbation 
31 

16. Exponentially increasing number of possible trajectories for a simple, 
three alternative delay perturbation for each echo 

32 



1.    Introduction 

Animal sonar systems typically are characterized by large bandwidths, motion of the 
transmitter/receiver, and small aperture (array size) relative to man-made sonars. Such systems 
have cross-range (azimuth and/or elevation) resolution that is much worse than their range 
resolution. For bats and dolphins, the theoretical disparity between range and cross-range 
resolution becomes large for ranges in excess of half a meter. This disparity can be mitigated by 
using synthetic aperture sonar (SAS) processing. SAS forms an image in which cross-range 
resolution is commensurate with range resolution. With the possible exception of single-pulse 
Doppler processing, however, conventional SAS appears to be much too complicated for 
implementation by biological systems. 

Recent results indicate that synthetic aperture processing can be greatly simplified. By 
considering simplifications that allow for biological implementation and generalizations that can 
emulate animal echolocation capabilities, SAS processing has actually been advanced beyond the 
previous state-of-the-art for man-made systems. These advances involve high resolution feature 
images, image-based tracking for motion compensation, sparse angular sampling, and the 
utilization of all available knowledge for acoustic imaging. All available knowledge includes prior 
expectations, non-acoustic sensory information, and acoustic information that is not explicitly 
associated with imaging, such as resonances. 

Experimentally derived images that are shown in this report are from targets that were 
suspended in lake water. The targets were completely contained within the transmitter/receiver 
sonar beam width and echoes were obtained as the targets were rotated. The transmitted signal 
was a dolphin-like pulse with 10 dB bandwidth between 50 and 150 kHz. The echoes were 
recorded by ARL, Univ. of Texas at Austin and were put into PC format and furnished to Chirp 
Corp. by P. Moore, D. Helweg, and J. Sigurdson, Code D351, SPAWAR Systems Center, San 
Diego. 

2.   Doppler-based SAS 

Some synthetic aperture systems depend upon Doppler sensitivity while others are Doppler 
tolerant. A Doppler-based system utilizes the angle dependence of range-rate for a moving sonar 
and a stationary scattering point. A relatively large range-rate is observed along the path of the 
sonar platform motion, and zero range-rate is observed orthogonal to the path of motion. A 
mapping thus exists between azimuth angle and range-rate. For side-looking systems, an object 
appears to rotate relative to the sonar, and this rotational motion can be used to form an image of 
the object. 

Range-rate can be measured with a single pulse if the pulse has sufficient time-bandwidth 
product to estimate relevant Doppler-induced time compressions of the signal [1,2]. If a single 
pulse has insufficient time-bandwidth product for Doppler-based angle measurements, then a fully 
coherent system can use multiple pulses for range rate estimation. In the multi-pulse case, many 
echoes are stored and processed as though they are all obtained from a long-duration transmitted 
signal that is composed of many transmitted pulses. Even if a new pulse is transmitted only after 
the echo from the previous pulse is received, the new pulse is part of the composite signal. This 
kind of "pulse-Doppler" processing requires a coherent integration time that extends over multiple 
transmissions and receptions. Different scattering points correspond to different range-rate vs time 



histories, and a coherent pulse-Doppler processor is used to form a matched filter for each image 
point [3-5]. 

3. Doppler tolerant, tomographic SAS 

It is uncertain whether echolocating animals are capable of multi-pulse, coherent processing, 
although sensitivity to a phase shift of a single echo has been demonstrated in bats [6-8]. A 
conservative model assumes that multi-pulse coherent processing capability is lacking. Even if 
bats or dolphins have the ability to coherently sum echoes from different transmissions, a 
noncoherent SAS processor or semi-coherent SAS (summation of envelope detected matched filter 
outputs) is advantageous because: 
1. The SAS processor is much easier to implement and is more tolerant of small errors between 

predicted and actual ranges and range-rates, 
2. Little resolution is lost when wideband, biological signals are used, since the envelope of the 

signal auto-correlation function contains only a few of the fine-structure oscillations that are 
used for coherent processing; 

3. The aspect sampling constraints that are associated with spatial aliasing (the effect of synthetic 
array element locations that are separated by more than half a wavelength) are removed, and 
are replaced by graceful degradation for sparse angular sampling (degradation that can be 
predicted from the peak-to-sidelobe ratio of the SAS point spread function, which is the same 
as the range, cross-range ambiguity function of the synthetic array processor); 

4. The image is tolerant of aspect-dependent phase changes that are introduced by viewing the 
same target point from different directions. 

A wideband, Doppler tolerant, tomographic synthetic aperture processor can be simplified to 
remove the requirement for fully coherent processing. In the case of dolphins, even the single-pulse 
matched filter assumption (or a process that is equivalent to matched filtering) is not required. 
This type of SAS processor is described in the following paragraphs. 

A moving sonar transmits signals and receives echoes from a sequence of points along its path 
of motion. The receiving points along the sonar's path are regarded as the locations of elements 
that are part of a large, synthetic array. This synthetic array can focus on a particular point by 
delay-and-sum beam forming. A compensatory delay is inserted at the output of each element, 
such that all the echoes from a given scattering point occur at the same time. The resulting time- 
registered echoes are then added. The delay-and-sum process is equivalent to forming a spatial 
matched filter for echoes from the chosen scattering point. 

The delay-and-sum process is also equivalent to reconstructing an image from its projections 
[9]. Projections occur naturally in radar/sonar data. All scattering points that are within the 
physical beam width of the sonar and that are at the same range (i.e., that lie along the same 
constant-range surface) contribute to the same echo sample. The sequence of echo samples on an 
A-scan (matched filter response vs range) represents a projection of the scatterer reflectivity 
distribution along the range axis. Different transmitter/receiver locations correspond to different 
propagation directions, and thus to different projections of the scatterer reflectivity distribution as 
shown in Figure 1. 

Several methods can be used to reconstruct the reflectivity distribution from its projections [10]. 
The back projection algorithm is nearly identical to delay-and-sum beam forming, as demonstrated 
in Appendix A [11]. Back projection or delay-and-sum beam forming can be implemented 



sequentially, such that the reflectivity estimate of each pixel is updated with each new echo. The 
echo sample that corresponds to a given target point is added to the sum of previous samples (one 
from each previous echo) that correspond to the same point. At a given sonar location, the echo 
sample corresponding to a chosen target point also corresponds to all the other target and clutter 
points at the same range. At a new location, the constant-range surface is rotated, and the echo 
sample for the chosen target point corresponds to other points that are located on a different 
constant-range surface, as in Figure 1. 

Delay-and-sum synthetic aperture processing does not require Doppler information. In fact, 
processing would be simplified if the sonar were to stop at each synthetic array element location, 
transmit a signal, receive the resulting echoes, and then move to the next transmit/receive location. 
To take advantage of this simplification without stopping, the system can use Doppler tolerant 
signals, such that the matched filter response is not sensitive to range-rate. 

Another simplification is to use noncoherent delay-and-sum beamforming, such that matched 
filter envelopes are used and phase is discarded. This simplification is feasible with wide band 
signals, since the envelope of the matched filter response contains comparatively few oscillatory 
"fine structure" peaks, which correspond to phase information. The resulting processor is 
semicoherent; a matched filter is used for each echo, but different echoes are noncoherently 
combined by summing the envelope detected matched filter responses. 

Observation point m=l 

Observation point m=2        \    / 

r,(A) 

Observation ion point m=3 -^\ ^(A) 

r3(A) 

Figure 1. As a sensor moves, it creates a synthetic array with elements m=l,2,3,.... Therangeof 
point A is different for each of these elements. To focus the synthetic array on point A, the 
corresponding delays are compensated by a delay-and-sum operation. Each line through point A 
represents part of a constant-range surface that lies within the beam width of the transmitter. All 
the scattering points that are on a line contribute to the m* echo at range rm(A). 



Wide-band, short duration pulses such as those used by dolphins are Doppler tolerant with or 
without semicoherent processing. Long duration wide band signals with hyperbolic frequency 
modulation (linear period modulation) such as those used (or approximated) by many FM bats are 
Doppler tolerant when they are processed by a semicoherent receiver [12-14]. In the case of 
dolphins, a matched filter may be approximated by the band-pass operation of the receiver, since 
the signal has very small time-bandwidth product. A tomographic SAS model for dolphins can 
thus use noncoherent processing without a matched filter assumption. 

A tomographic SAS model for bats requires pulse compression via matched filtering, inverse 
filtering, or an equivalent process, together with noncoherent pulse-to-pulse summation capability. 
A process that is equivalent to matched filtering or inverse filtering may be synthesized by 
spectrogram correlation [15,16] or by a time-frequency plane version of the top-down, bottom-up 
gradient descent process to be discussed in the Section 9. 

4.   The range, cross-range ambiguity function (SAS point spread function) 

The delay-and-sum receiver response to a point scatterer is the sum of the rotated constant- 
range curves in Figure 1. This sum is shaped like an asterisk. For M different sensor positions, 
the center point of the asterisk is M times larger than an individual line, as shown in Figure 2. 

A sampled version of a two-dimensional reflectivity distribution is an array of sample points 
with different reflectivities. The back projection SAS image of the sampled reflectivity distribution 
is a superposition of weighted, shifted versions of the function in Figure 2, where the weights 
correspond to the sample point reflectivities and the shifts correspond to the locations of the sample 
points. This weighted sum is a discrete convolution operation. The image of the reflectivity 
distribution is the convolution of the function in Figure 2 with the actual distribution (or a real, 
non-negative version of the actual distribution). 

azimuth 

Figure 2. The point spread function (SAS range, cross-range ambiguity function) of a 
tomographic SAS with 12 degree angle increments over 180 degrees. Peak-to-sidelobe ratio: 

number of echoes used to construct the image = 180/12 = 15. 



The actual reflectivity distribution is convolved with (or smeared by) the function in Figure 2, 
which is known as the point spread function (PSF). The function in Figure 2 also represents the 
response of a receiver that makes a hypothesis that a point scatterer is present at the center of the 
asterisk, when the actual point scatterer position is at various points on the image plane in the 
Figure. The function in Figure 2 is thus the range, cross-range ambiguity function (RCRAF) of the 
imaging system, as well as the point spread function [17,18]. This ambiguity function has a peak- 
to-sidelobe ratio of M, where M is the number of different sensor positions or elements in the 
synthetic array. When M is small (as in a monaural or binaural system with no SAS capability), 
a strongly reflecting point at one location can severely affect the image of a weakly reflecting 
point at a different location. PSF sidelobes produce artifacts when a scattering point is much 
larger than its neighbors for at least one aspect angle. The artifacts appear as lines that pass 
through the strong scattering point. 

If the peak-to-sidelobe ratio (P/S) of the range, cross-range ambiguity function (RCRAF) is 
small, different points on a distributed target can interfere with one another, leading to a self-clutter 
effect. A target that is surrounded by other scatterers also will be difficult to detect. A 
psychometric procedure that measures angular accuracy or resolution between closely spaced 
points may depend only on the sharpness of the central peak of the binaural RCRAF, and can be 
misleading with respect to detection in clutter and classification of distributed targets. 

For a binaural system, the RCRAF has P/S=2 and is scissor-shaped. As a binaural sonar 
approaches a target, the angle between the scissor blades increases. If range resolution is 
sufficiently fine (if the width of the scissor blades is small) and if echo samples corresponding to 
each point on the target are summed as the sonar approaches the target, then P/S becomes larger 
and the image becomes less ambiguous as the target is approached. Binaural processing thus can 
be used with forward-looking SAS to create an acoustic image. Biomimetic nonlinear processing 
can be used to reduce the effects of large point spread function sidelobes. 

5.   Comparison of biologically inspired SAS with conventional SAS 

Biologically inspired SAS has at least two properties that make it different from conventional 
Doppler tolerant (tomographic) SAS: 

1. Biomimetic nonlinear suppression of the sidelobes of the point spread function (PSF) of SAS 
images; 

2. Noncoherent (phase tolerant) summation over different aspect angles, which decreases 
sensitivity of the SAS image to aspect-dependent phase shifts that depend on target shape. 

Different phase shifts are expected to occur when various target structures are viewed from 
different aspects.   When a flat metal plate is tilted so that it does not reflect energy directly back 
toward a receiver, its impulse response (as approximated by physical optics) changes from a single 
positive impulse to a positive impulse at the leading edge and a negative impulse at the trailing 
edge. The impulse response of a spherical scatterer is approximated by an impulse followed by a 
rectangular function. The rectangular function is synthesized via an integrator with positive weight 
followed by another, delayed integrator with negative weight. In general, the echo from a complex 
target can be represented as a weighted sum of delayed versions of the transmitted signal, 
integrated versions of the signal, and differentiated versions of the signal. The weights and delays 
in this sum are aspect dependent; the weights can change sign (e.g., from positive to negative) 
depending on aspect. The integration and differentiation operations induce 90 degree phase shifts. 



An example of an aspect dependent sign change is shown in Figure 3. A tilted rectangular plate 
is composed of material with higher acoustic velocity than water (lower acoustic impedance). The 
physical optics approximation to the target impulse response is a positive impulse from the near 
edge of the plate followed by a negative impulse from the far edge. The impulse response of an 
edge that is initially closest to the sonar changes from positive to negative as the plate rotates. 

Conventional SAR/SAS systems implicitly assume that targets are composed of independent 
point scatterers with aspect independent phase shifts. This assumption has not been deleterious 
because conventional systems generally do not view targets over observation angles that exceed 
120 degrees.   Insensitivity to aspect-dependent phase shifts is obtained via noncoherent summation 
of matched filtered echoes over different aspect angles. Such noncoherent summation is feasible 
with minimum loss of resolution when signals are very broadband, as in biological sonar systems. 

PSF (point spread function) sidelobe suppression and tolerance of aspect-dependent phase shifts 
tend to make BioSAS comparatively tolerant to sparse aspect sampling over large angular 
observation intervals. Sparse sampling in aspect decreases the peak-to-sidelobe ratio of the PSF, 
and a method that suppresses the effect of such sidelobes leads to better images when aspect 
samples are far apart. Large aspect changes may result in different phase shifts from the same 
scattering point as in Figure 3, and tolerance of such phase shifts tends to increase image quality. 

BioSAS can be compared with conventional techniques by ascertaining the separate effects of 
each BioSAS property, i.e., (1) PSF sidelobe suppression and (2) insensitivity to aspect-dependent 
phase shifts. This comparison is illustrated in Figure 4. The images in Fig. 4 are generated from 
echoes obtained from the Manta mine in the SPAWAR/ARL data set (SPAWAR Code 351, San 
Diego, CA). The Manta is viewed over 360 degrees at four degree intervals.   An image generated 
by a conventional SAS processor is shown in Figure 4a. In Figure 4b, phase tolerance is included, 
but sidelobe suppression is lacking. In Figure 4c, sidelobe suppression is used without phase 
tolerance. Finally, in Figure 4d, both sidelobe suppression and phase tolerance are used, thus 
converting the conventional SAS into BioSAS. The images in Figure 4 indicate that a majority of 
target points have echo phase shifts that are sensitive to aspect changes.   These target points 
appear on the phase tolerant images but are suppressed on the phase sensitive images. 

To assess the effect of sparse aspect sampling, the four processors in Figure 4 can be 
compared for a large aspect sampling interval of 20 degrees (a total of eighteen "looks" at the 
target over a 360 degree interval). The results are shown in Figure 5. 

Arrows indicate 
impulse response 
when seen from 
the left side 

Arrows indicate 
impulse response 
when seen from 
the right side 

Figure 3. A tilted metal plate in water has a back-scatter impulse response composed of a positive 
impulse followed by a negative one, even when the plate rotates 180 degrees. Cancellation of edge 
images can occur with phase-sensitive processing over 180 degrees or more. 

10 



a. No PSF sidelobe suppression, 
no phase tolerance (conventional SAS). 

b. No PSF sidelobe suppression, 
with phase tolerance. 

c.   With PSF sidelobe suppression, 
no phase tolerance. 

d. With PSF sidelobe suppression, 
with phase tolerance (BioSAS). 

Figure 4. Comparison of SAS images generated with four different processors using a signal with 
100 kHz bandwidth and 100 kHz center frequency, with aspect samples that are 4 degrees apart, 
and with an angular observation interval of 360 degrees, (a) Fully coherent processing, (b) 
Semicoherent processing (noncoherent summation over aspect for tolerance of aspect-dependent 
phase shifts),   (c)  Full coherence combined with nonlinear processing to reduce sidelobes of the 
SAS point spread function (the range, cross-range ambiguity function),   (d). Semicoherent 
processing for tolerance of aspect-sensitive phase shifts combined with nonlinear PSF sidelobe 
reduction; biologically inspired SAS processing. 

11 



No PSF sidelobe suppression, 
no phase tolerance (conventional SAS). 

b. No PSF sidelobe suppression, 
with phase tolerance. 

c.   With PSF sidelobe suppression, 
no phase tolerance. 

d. With PSF sidelobe suppression, 
with phase tolerance (BioSAS). 

Figure 5. Comparison of SAS images generated with four different processors using a signal with 
100 kHz bandwidth and 100 kHz center frequency, with aspect samples that are 20 degrees apart, 
and with an angular observation interval of 360 degrees, (a) Fully coherent processing, (b) 
Semicoherent processing (noncoherent summation over aspect for tolerance of aspect-dependent 
phase shifts),   (c)   Full coherence combined with nonlinear processing to reduce sidelobes of the 
SAS point spread function (the range, cross-range ambiguity function),   (d). Semicoherent 
processing for tolerance of aspect-sensitive phase shifts combined with nonlinear PSF sidelobe 
reduction; biologically inspired SAS processing. 

12 



6.   The algebraic reconstruction technique (ART) and top-down, bottom-up processing 

A range sample of a pulse-compressed echo amplitude vs. range plot (A-scan) corresponds to 
the projection (the sum of the reflectivities) of all the pixels in a constant-range surface. If the 
sonar moves, the measured sample value represents one of many simultaneous linear equations that 
theoretically can be solved to obtain the reflectivity distribution. The corresponding matrix 
equation can be solved by a gradient descent optimization technique. Echo samples that are 
generated from a model of the reflectivity distribution are compared with actual echo data samples, 
and the difference is used iteratively to improve the model. This method is called the algebraic 
reconstruction technique (ART) [10]. ART is a special case of an iterative sharpening or 
deconvolution algorithm. Solution of the matrix equation is equivalent to applying an inverse 
matrix to the observations, where the matrix that is inverted includes the point spread function. If 
ART processing can invert the point spread function (i.e., convert the PSF into an impulse), then 
the ART image should be superior to back projection. 

Top-down, bottom-up processing is a cognitive model that describes the interaction between an 
internal (top-down) representation and sensory input (bottom-up) data [21,60]. A comparison 
between predicted and observed data results in a correction or modification of the internal 
representation. The comparison and correction can be implemented as a gradient descent algorithm 
in which a high resolution, internal model is used to synthesize the input data that would be 
observed at a neuronal processing center. The comparison can occur in a relatively low resolution 
representation, e.g., in a cochlear time-frequency representation or in an image that is represented 
by the superior colliculus [22]. 

The mean-squared error between the echo and model representations is 

M 

Mffi(4) = (2^MRmax)-,£{2 I l     [echom(r,O)-mdlm(A:,r,0)]2drdö} (1) 

where the parameter matrix A contains sample values afJ of the high-resolution representation and 

E{»} denotes an ensemble average over various realizations of the echo and the model. The echo 
varies because it is corrupted by noise, and the model may vary because it can include stochastic 
neuronal responses. The sum over m represents observations from M different aspect angles, as in 
Figure 1. The simplest echo model is a smeared version of the high resolution representation: 

mdl^gr^^a.smearjr-r^e-e^). (2) 

The smearing function represents the loss of angular resolution that is associated with a wide 
physical beam width.   If the signal is a short duration pulse, the m"1 echo of a given target point is 
corrupted by a line-like smearing function that is orthogonal to the propagation direction, as in 
Figure 1. 

The gradient descent technique iteratively solves for the high resolution samples atj via the 

recursion 
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arfSE(A) 
akl (n + 1) = akl (ri) - p ——     for all values of k and / (3) 

*kl 

where n is the number of times the iteration has been repeated. The LMS stochastic gradient 
algorithm uses only the squared error rather than the mean-squared error, yielding an update 
equation 

SSE{A,r,0,m) 
akl {n +1) = akl («) - // —     for all values of k and /. (4) 

In the LMS algorithm, the iteration is computed at successive values of the variables (r, 6) and 
observations m=l,...,M. The iteration is sufficiently repetitive to approximate an ensemble 
average over multiple observations. The LMS (or LMS stochastic gradient) algorithm is very 
simple to implement and has many engineering applications [23-25]. 

The gradient in (4) depends only upon the error at a particular (r, 6) value and the partial 
derivative of the model with respect to akf. 

6SE(A;r,0,m) 
 =- = -2[echom(r,9)-mdlm(A;,r,e)][ändlm(A:,r,e)/alk!]. (5) 

WH ~ ~ 

In (5), the error between the (bottom-up) echo and the (top-down) model is measured in a low 
resolution or smeared representation. For the simple convolution or smearing model in (2), 

dmdlm y; r, 0, rri) /cükl] = smearm (r-rk,0-Q). (6) 

In the LMS algorithm, the gradient of the squared error equals [the error at (r, 9), as measured 
in a low resolution representation] x [the smearing function for a relevant area of the high 
resolution image]. If the smearing function is broad in bearing and narrow in range as in Figure 1, 
the update equation uses the error at a given range value to update a swath of high-resolution 
pixels in the internal model. This update operation is the same as ART. The high resolution 
representation is updated by using the error in the low resolution representation along with the 
known smearing function. 

Images that are obtained from back projection BioSAS and from ART-BioSAS are shown in 
Figure 6 for a Manta mine that is observed over a ninety degree interval with ten degree increments 
between observations (nine observation points at 1 deg, 11 deg, ...,89 deg). As expected, ART- 
SAS yields a better image at the expense of the increased processing time that is associated with 
multiple iterations. 

Conventional image sharpening techniques such as high pass filtering via a Laplacian operator 
and/or lateral inhibition are prevalent in biological systems [61-63], but seem to be unnecessary for 
top-down, bottom-up gradient descent. 
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Figure 6.   Manta with actuator, high frequency signal, observations at ten degree intervals 
over 90 degrees (nine observation points), no shadow compensation. 
Top: Bionic SAS back projection image. Bottom: Bionic SAS ART image. 
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7. Biologically inspired techniques for accelerating a gradient descent algorithm and finding 
a global minimum - associative gradient descent 

The iterative operations in (4)-(6) can be accelerated via parallel processing. All of the 
elements of the A -matrix, for example, can be updated simultaneously by a parallel implementation 
of (4) for all (k,l) values, as in an ideal gradient computation. A global minimum can be pursued 
in spite of local minima by using the simplex method [59] or a genetic algorithm [26], which is 
similar to the simplex technique. For a given local minimum, an associative memory can suggest 
other solutions (other ,4-matrices or interpretations of the same data) that may correspond to a 
smaller, global minimum. 

Perceptual alternation (e.g., the Necker cube) and visual illusions suggest that the brain uses 
prior knowledge and other information to speed up the iteration process and to organize sparse 
image data into a picture that is commensurate with the viewer's experience. A relatively small 
number of observations is used to hypothesize the final, high-resolution image, and this image 
hypothesis is introduced into the top-down data representation [27]. Multiple hypotheses can be 
introduced simultaneously via parallel processing. An image hypothesis can be generated from 
prior expectations and an associative memory that is activated by a smeared (low resolution) 
image, resonance phenomena, echo time-frequency distributions, data from nonacoustic sensors, 
and other data that are not directly associated with imaging. A model for an associative memory is 
a k-nearest neighbor classifier in feature space [28], or a neural network that can be trained to 
make the correct association for various versions of an incomplete image. All kinds of relevant 
information can be inserted into an ART-like tomographic SAS imaging algorithm in order to 
accelerate the iterative process and to obtain a global minimum. This process might be called 
"associative gradient descent." 

If the predicted echo incorporates hypotheses about multiple propagation paths, then the 
resulting comparator is part of a RAKE or matched field receiver. A RAKE receiver correlates 
input data with the expected version of the data (e.g., with a predicted target echo that is passed 
through a multipath channel) [29]. A "matched field" receiver performs the same operation at 
multiple receiving sites (the locations of physical or synthetic array elements). The correlation 
process can be implemented as part of a mean-square error computation. For energy normalized 
echoes and models, a receiver that is equivalent to a correlator can be obtained by squaring the 
difference between received and predicted echo data echom (r,6)- tndlm {A, r, 0) and integrating 

the squared error over range and cross-range coordinates. 

8. Top-down, bottom-up gradient descent and inverse filtering 

Top-down, bottom-up gradient descent can be applied in the time-frequency plane to yield a 
process that is equivalent to inverse filtering (deconvolution of echoes with respect to the 
transmitted signal). In this case, the A -matrix, which represents the high-resolution, top-down 
internal model, is a sampled version of the hypothesized target impulse response. The top-down 
cochlear representation is formed by convolving the hypothesized target impulse response with the 
transmitted signal and passing the resulting echo through a cochlear model. This top-down version 
of the cochlear output is compared with the cochlear response to the actual echo. The comparison 
is used to improve the high resolution internal model of the target impulse response via the LMS 
algorithm. 
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The cochlear time-frequency representation involves nonlinear processing, and a major 
advantage of the LMS algorithm is that it easily handles nonlinearities. The only inconvenience 
with respect to a nonlinearity is that the partial derivative dmdl{A, r, 9) I dakl in (6) may be 

difficult to evaluate analytically, and may require empirical evaluation via the difference equation 

dmdl{A,r,0) Idaa * [mcU{A+u;r,9)-mdl(A,r,6)] Ie (7) 

where A+ is the same as A except that a small increment fhas been added to element kl. For 

energy normalized cochlear representations, calculating the mean-square error is equivalent to 
correlating the cochlear representation of the echo with a reference function that is based on a 
hypothesized target model (spectrogram correlation). 

The relation between matched and inverse filtering can be understood by considering a filter 
that forms a minimum mean-square error estimate of the target impulse response from an echo time 
series. If the prior estimate of the target transfer function (the Fourier transform of the unknown 
target impulse response) is Hest (/), the estimating filter has transfer function [30,31] 

rr n-       EttHest(ffW\f) a 
U)    6N{f) + E{\Hm{ft)\U{ff 

where U(f) is the Fourier transform of the transmitted signal, A is the expected duration of the 
target impulse response, and N(f) is the noise power spectral density. Two approximations to the 
right-hand side of (8) are 

V(f) «[C/(/)]_1    if signal-to-noise ratio (SNR) is large (9) 

and 

V(f)~ 
E{\Hest(ff) 

£/*(/)    ifSNR is small. (10) 

If SNR is large, then the target impulse response (which has been modeled as a projection of the 
reflectivity distribution onto the range axis) is estimated with an inverse filter, i.e., a filter that 
deconvolves the transmitted signal from the echo. If SNR is small, if the noise is white, and if 
there is no prior information about the target transfer function, then the target impulse response is 
estimated by a filter that is matched to the transmitted signal, i.e., a filter with transfer function 

proportional to U*(f) . The filter in (8) performs pulse compression regardless of SNR. 
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9.   Top-down, bottom-up gradient descent and pulse compression with spectrograms 

Top-down, bottom-up gradient descent processing can be used to solve a controversial modeling 
problem in animal echolocation: How can animals implement a pulse compression filter with 
~lcm range resolution and an interaural processor with time difference acuity of ~7us when the 
traditional model of the auditory system uses a bank of bandpass filters followed by envelope 
detectors with relatively long integration times? The envelope detectors square-and-smooth (energy 
detect) filter outputs over ~260 us for dolphins [32,33], corresponding to a range interval of 20 cm 
in water (Figure 7). For bats, the integration interval is approximately ~400 us [34], 
corresponding to a range interval of 7 cm in air. 

To solve the modeling problem, it is necessary to show that pulse compression can occur via 
operations on time-frequency (spectrogram) representations such as the one in Figure 7. This 
possibility can be demonstrated by considering the following relation between spectrograms and 
magnitude-squared cross-ambiguity functions [15]: 

JJ* echoJlteriUDS^jnerit + T,/W = jJlXsignC.echoVJf \Xfilter, filter^ + *jf <*W 

(11) 

where SechojiUeXt,fi is the observed echo spectrogram in Figure 7 and "filter" refers to a baseband 
version of the bandpass filters that are shown in the figure,   S^na^to-ft/) is the observed 
spectrogram of the transmitted signal. The desired echo representation for a semicoherent, Doppler 
tolerant SAS processor is the envelope detected signal-echo cross-correlation function 

\K*ignal,echo{*/ \       \%signal,echo\lt U/ \ (12) 

which is known if \ZsignaUcho(t,fi \2 is known. The magnitude-squared filter auto-ambiguity function 
\Xfiherjiiter(t,f)\2 is a smooth function of time and frequency that presumably is known to the animal. 

echo- 

Envelope detector with 
260|is integration time 

—► Bandpass filter at f^ —» —► 

-  ► 

Envelope detector with 
260jis integration time —► Bandpass filter at fi —> 

Echo 

Spectrogram 

bechoJilter(tj) 

Figure 7. Traditional model of the peripheral auditory system at frequencies above five kHz, using 
integration times corresponding to the critical interval in dolphins. 
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Pulse compression can thus occur if (11) can be solved for \Xsignaucho(t,fl\2 , where all the other 
functions in the integral equation are assumed to be observable or known a priori. 

The solution \Xsignaiecho(t,ß \2 can be obtained from (11) by using gradient descent to find the 
signal-echo magnitude-squared cross-ambiguity function that minimizes the mean-squared error 

MSE = \[tfSec^ßllJtJ)S,gnalJlter(t + T,f)dtdf - jllz^^itjf \Zfiller,filter(t + r,ff dtdf 

= \ error2 (x)dx. (13) 

The LMS update equation is 

[l        r l dsrror ( x) 
\Xsignal,echo V*>/ )\    I        = \\Zsignal,echo\*>J )\   \n ~ M  ~  « Tt~~F^ 

<A Xsignal,echo V ■> J )\ 

= [li^fl;,ecte(^/)|2]n +2»[error(T)]\%filterJiller(t + z,ff, (14) 

dx 

iterated over all t,f, and x values. This equation can be implemented with a top-down, bottom-up 
process as illustrated in Figure 8. 

Estimated magnitude-squared signal-echo   ^_ 
ambiguity function, |£Ä„fl/ecÄO(/,/)|

2 
Correction 

Correlate (in time) with \%filetrJller(t,f)\
2, 

the magnitude-squared autoambiguity 
function of the spectrogram filters 

Comparator: 
Compute the error at each t, fand x value 

Multiply by 
constant x \XfiiterjnteXt+t,fi\2 

Correlate (in time) with the spectrogram 
of the transmitted signal 

Echo spectrogram, Secho,ßter(tJ) 

Figure 8. Pulse compression via top-down, bottom-up processing of the echo spectrogram. 
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A binaural version of the processor in Figure 8 estimates interaural delay by substituting the 
echo at the second ear for the signal, as illustrated in Figure 9.   The processor correlates the 
spectrogram from ear 1 with the spectrogram from ear 2 in order to estimate the cross correlation 
function magnitude corresponding to the input signals at the two ears, before the signals are 
transformed into spectrograms. Spectrogram correlation implies cross correlation of pairs of 
envelope detected bandpass filter outputs from the two ears at each frequency channel. This cross 
correlation operation can be approximated by coincidence detectors that operate on the neuronally 
coded signals in two delay lines, one from each ear. This operation corresponds to the Jeffress- 
Licklider model for binaural localization [35], which has been neurologically verified in the barn 
owl by Konishi [36]. 

Figure 9 suggests that the Jeffress model may be incomplete at high frequencies; it should 
perhaps be augmented by a bottom-up, top-down process that sharpens the estimate of interaural 
delay by converting the spectrogram cross-correlation function into the magnitude-squared cross- 
ambiguity function of the two input signals. Such augmentation applies to frequencies that are too 
high for auditory neurons to carry phase information. Since bats are sensitive to echo phase shifts 
[7,8], phase information in bat auditory neurons may deteriorate only at frequencies above 20 kHz. 

Estimated magnitude-squared cross-ambiguity fncn ^_ 
for input signals at the two ears, |f^,,^2(^/)|2 

Correction 

Correlate (in time) with \Xfiielrjiter(t,f)\2, 

the magnitude-squared autoambiguity 
function of the spectrogram filters at each ear 

Comparator: 
Compute the error at each t, fand x value 

Multiply by 
constant x \zfiiterjnUt+T,ß\2 

Correlate auditory spectrograms in time 

Ear 1 output spectrogram    Ear 2 output spectrogram 
Ssiglfdter(t,f) Ssig2,filter(tj) 

Figure 9. Interaural delay estimation via top-down, bottom-up processing of echo spectrograms. 
Interaural delay is obtained by cross-correlating the input signals at the two ears. Cross 
correlation of spectrograms, which are the output signal representations at the two ears, is part of 
the processor, but top-down, bottom-up iteration is also used. 
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At frequencies that are sufficiently low for transmission of phase information along the auditory 
nerve, the spectrogram model in Figure 7 can be used without the envelope detectors. The 
spectrogram without envelope detection is 

Ssignaijuer (',/) = J signal(x) filter {t - x) exp[j2nf(t - x)]dx (15) 

where filter(x) is the impulse response of the baseband filter function that is used to form the 
spectrogram. Cross-correlation of phase-sensitive spectrograms from the two ears yields 

\\ 
Ssignal\,filter 0', f)S'' signalZ.filter (t + T,f)dtdf = E ^R^^^ (f) (16) 

where Eßetr is the energy of the filter impulse response. When the cross correlation in (16) is 
synthesized by first time-correlating the outputs of each filter pair at a given frequency and then 
summing the results over filter pairs at different frequencies, the processor can be implemented 
with a Jeffress model. 

Equations (11-16) pertain to spectrogram analysis with constant-bandwidth filters. The 
corresponding equations for proportional-bandwidth filters (which are more biomimetic) are given 
in Appendix B. 

10. Top-down, bottom-up ART-SAS processing and beam deconvolution 

Dolphin head scanning behavior suggests that SAS may be augmented by beam deconvolution. 
This deconvolution process can be included in an ART-type gradient descent algorithm. A high 
resolution internal model is convolved or smeared with the known beam patterns and is then 
compared with incoming multi-beam data to generate corrections to the model. A set of 
overlapping beam patterns can be generated by a binaural system that implements multiple 
direction-of-arrival hypotheses in parallel. Head scanning generates extra independent 
observations by changing the cross-range distribution of transmitted power. Binaural 
representations can be incorporated into an ART process by predicting the data at each ear. 

11. Tracking and motion compensation with top-down, bottom-up ART-SAS processing 

Hypotheses about translational and rotational motion of the sonar and the target can be 
incorporated into an ART processor. The best motion hypothesis corresponds to the least error 
between the echo data and the prediction. The best motion hypothesis can be used to track the 
target, to predict its location and orientation at the next echo, and to characterize body motion in a 
fish or wing beats in a bat. This process is a form of image-based tracking, which will be 
discussed in Section 18. 

12. Top-down, bottom-up gradient descent with low resolution neuronal maps 

In Figures 8 and 9, the data representation at the comparator is a smeared (low resolution) 
version of the echo spectrogram, not a sharpened one. Similarly, the inferior colliculus is used for 
integration of acoustic, visual, and somatosensory data via spatially registered, low resolution 
maps [37]. Top-down, bottom-up processing can use such low resolution maps to create a high 
resolution image at a higher level of the brain. 
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A basic question in neurophysiology is how the locations of point stimuli (e.g., in the retina) can 
be inferred from the collective discharge of a neuronal population [38]. The use of a low resolution 
map to improve a high resolution internal model via top-down, bottom-up gradient descent 
provides an answer to this question. The collective discharge is a consequence of divergent 
connections from various sensor elements, and it is analogous to a low resolution map. In this 
case, the locations of the point stimuli can be estimated with top-down, bottom-up stochastic 
gradient descent, using the LMS algorithm. To implement this process, the estimator must have a 
sufficiently accurate ensemble-average model of the divergent process (the smearing function) that 
maps a single point into a collective discharge. A payoff for such divergent stimulus coding is that 
neighboring sensors with overlapping excitation curves contribute to the representation of a point 
stimulus. The gradient descent deconvolution process can use these extra observations to obtain a 
more accurate stimulus representation than can be obtained from a single sensor. 

13.    Top-down, bottom-up gradient descent and hyperacuity 

The gradient descent deconvolution process provides a mechanism for hyperacuity [39]. 
Hyperacuity involves sensitivity to a small difference between a reference stimulus and another 
stimulus, e.g., two parallel line segments on a vernier scale, which may be colinear or slightly 
displaced (—|— vs. —|—). For sensitivity to small differences, the mean-squared error in (1) 
can be changed to mean absolute error: 

M ,        _-_     flit fR max 

MAE(A) = (27IMRmJ-'E{Z [ [     \echom(r,e)-mdlm(A,r,e)\drdO}. (17) 
m=\ 

In this case, the LMS update equation becomes 

aAE(£r,0,m) 
akl(n + \) = akl(ri) - ju —      for all £, / values (18) 

where 

dAE(A,r,e,m) 

&u 
= -sgn[echom(r,e)-mdlm(A;r,0)][^dlm(A:,r,e)/aikl]. (19) 

In (19), sgn(error) equals one if error>0 and minus one if error<0. The gradient changes its sign 
but not its magnitude when the error becomes positive rather than negative, even for extremely 
small absolute error values. This behavior is analogous to computing the difference between the 
responses of two tuned neurons with slightly displaced and extremely steep tuning curves, where 
the actual stimulus value is midway between the best stimulus values for the two neurons. Even 
more sensitivity to small errors can be introduced by using the p* root (p=2,3,...) of the absolute 
error value in (17). In this case, the algorithm must be designed to cope with unbounded values of 
the partial derivatives in (18) when the error approaches zero. 
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14. Feature images 

A simplified, conservative model for biological SAS forms an image by noncoherent summation 
of all echo samples corresponding to each scattering point as the sonar moves. This simplification 
allows the formation of images that represent features other than reflectivity as a function of 
location. Volume clutter feature images are insensitive to reflectivity, and represent a measure of 
the number of small, Rayleigh scatterers in a pixel-sized volume element. Rough/smooth feature 
images are sensitive to the variation of reflectivity as the aspect changes. 

15. The volume clutter feature image 

A volume clutter feature image is obtained by detecting Rayleigh scatterers in an amplitude- 
normalized version of the pulse compressed echo [40]. Amplitude normalization eliminates 
conventional reflectivity as a target feature. The volume clutter feature image is bright when a 
pixel contains many Rayleigh scatterers, e.g., bubbles or particles that are small relative to a 
wavelength. If the small scatterers are displaced by a comparatively large target, the volume 
clutter feature image becomes dark. A comparatively large target with very small backscatter 
cross section shows up as a target-shaped hole in the volume clutter feature image. 

Figure 10 (top, left) shows a SAS reconstruction of a Rockan mine, without the adaptive 
thresholding that is usually applied to suppress clutter in the final image. The Rockan is a low- 
cross section target (for back-scattered sound) that resembles a large, trapezoidally shaped clam 
shell. The target is surrounded by volume clutter consisting of small bubbles and particulate 
matter in the lake water where the measurements were made. The volume clutter appears as a 
hazy, fog-like image surrounding the target. The top, right part of Figure 10 shows a volume 
clutter feature image constructed from the same echo data as in the top, left image. In this image, 
the target is suppressed and the volume clutter is accentuated. Since the image has high resolution, 
the target appears as a hole or cavity with a distinctive shape. The bottom, left part of Figure 10 
shows an enhanced target image that is obtained by multiplying the clutter feature image by a 
constant and subtracting it from the reflectivity image. The bottom, right part of Figure 10 shows 
an enhanced clutter image that is obtained by multiplying the reflectivity image by a constant and 
subtracting it from the clutter feature image. 

If the volume clutter were to become more reflective relative to the target, the image at the top, 
left in Figure 10 would become nearly uniform, and detection/classification of the target with a 
reflectivity image would become very difficult. The clutter feature image on the top, right of 
Figure 10, however, would become even better at revealing the presence and shape of the target. 
Target detection with a clutter feature image is not predicted by the sonar equation, although this 
type of detection is familiar to radiologists who work with medical ultrasound. (In medical 
ultrasound, organs such as the gall bladder and other structures are sometimes identified as dark 
shapes that are defined by the surrounding clutter echoes or "speckle.") The sonar equation is a 
logarithmic version of the signal-to-interference ratio at the receiver output, where the "signal" is 
associated with target reflectivity and the "interference" is associated with clutter echoes and noise 
[41]. Detection with a reflectivity image is predicted by the sonar equation, but detection with a 
volume clutter feature image is predicted by the inverse of the sonar equation (the clutter-to- 
signal ratio). Detection and classification with a volume clutter feature image as in Figure 10 may 
explain how dolphins can find buried fish [42]. 
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(weight x reflectivity image) 

Figure 10. Top: A SAS reflectivity image and a volume clutter feature image of the same low- 
reflectivity target. Bottom: Images constructed from weighted sums of the reflectivity and feature 
images in order to enhance or suppress the target relative to the volume clutter. The images shown 
here were constructed from echoes obtained over 360 degrees of rotation with 3.7 degree 
increments between echoes. 
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16.   The rough/smooth feature image 

Another feature image can represent smooth or rough reflectors. For smooth and rough feature 
images, the sum in the delay-and-sum SAS beam former is replaced by a quantity that depends 
upon the aspect-dependent variation of the echo samples that contribute to the sum. Pixels with 
large aspect-dependent amplitude variation are associated with smooth surfaces that have large 
back-scatter reflections at a few aspect angles and weak reflections at other angles. Pixels with 
small aspect-dependent variation are associated with small, isotropic scattering points that are 
found on rough surfaces. 

Figure 11 shows composite rough/smooth bioSAS feature images for four different mines: 
Rockan, Manta, VEMS, and MO-8. The smooth-target feature image and the rough-target feature 
image compete for representation of each pixel in Figure 11. Pixel values in the composite image 
represent the larger of the two feature images at each sampling point. Smooth surface pixels are 
colored blue and rough surface pixels are red. Because the Rockan is designed to suppress back- 
scattered specular reflections, the rough-surface feature image dominates the Rockan image, 
making it almost totally red. The Manta resembles a truncated upright cone with a rough plate (the 
actuator) on the top planar surface. A SAS reflectivity image shows the outer shell with no 
indication of the rough plate; the interior appears to be hollow. A smooth-target feature image also 
shows only the outer shell. A rough-target feature image, however, shows only the rough plate. 
The ability to "see" the actuator and to use it for target recognition is greatly enhanced by using the 
rough-smooth composite color feature image. 

BioSAS feature images, like more conventional bioSAS reflectivity images, degrade gracefully 
when the aspect sampling interval becomes large. Large aspect sampling intervals correspond to 
high area coverage rate. Figure 12 shows a composite rough/smooth feature image of a Manta 
mine, obtained with an aspect sampling interval of twenty degrees over an aspect observation 
interval of 360 degrees. The image is thus constructed with only eighteen echoes. 

17. Motion-based feature images 

Other feature images can be sensitive to motion. Semi-coherent processing of HFM/LPM 
(hyperbolic frequency modulated, linear period modulated) bat-like signals, for example, can be 
used to estimate acceleration from frequency shifts [14], and these acceleration estimates can be 
represented by an image. Motion-based images may be valuable for motion compensation to 
obtain a more accurate SAS image, for separating a moving target from surrounding clutter, or for 
discriminating moving clutter from stationary targets (e.g., seaweed that shifts with surge in 
shallow water). 
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Figure 11. Composite color images of four mines with smooth scatterer image in blue and 
rough scatterer image in red (3.7 deg aspect sampling intervals over 360 deg). 
Top left: Rockan. Top right: Manta. Lower left: VEMS. Lower right: MO-8. 

Figure 12. A composite smooth/rough BioSAS feature image obtained from echoes measured at 
20 degree intervals over a 360 degree observation interval (18 different aspect angles). Smooth 
surfaces are blue; rough surfaces are red. The images are constructed with echoes from a Manta 
mine, using a dolphin-like signal. The echoes are from the SPAWAR/ARL data set. 
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18.   Image-based tracking 

A realistic acoustic imaging model for a biological sonar system must allow for freedom of 
sensor and target (prey) motion. One way to achieve this goal is to use the images themselves to 
compensate for deviations between actual motion and predicted motion [43]. A different motion 
compensation method relies on cross-correlation between overlapping echoes. 

A theoretical counter-example to cross-correlation for image registration occurs for convex 
targets with a single specular reflection at each aspect angle. For the target in Figure 1, different 
area elements on the target surface have maximum reflectivity as they become orthogonal to the 
propagation direction. The echo cross-correlator response is maximized by moving the effective 
center of rotation so that the single, large echo at each aspect always corresponds to the same 
image pixel, even though the echoes are from different parts of the target surface.  A similar 
phenomenon has been encountered at the Naval Coastal Systems Station (CSS) in Panama City, 
FLA. CSS has found that a SAS echo cross-correlation motion compensation system breaks down 
when there are an insufficient number of small scatterers to yield an accurate echo cross- 
correlation measure. 

Another counter-example for cross-correlation processing occurs when there is a large aspect 
difference between "looks." In this case, the echoes from a random array of point scatterers will 
become decorrelated because of the aspect change, and a motion compensation method that relies 
on echo cross correlation will again deteriorate. Large aspect differences are not expected for 
conventional SAS because of area coverage rate constraints (avoidance of spatial undersampling), 
but wide-band bioSAS can form images from observations with large aspect differences. 

Image-based tracking has been introduced in the context of ART processing (Section 11), but it 
also can be used for delay-and-sum (back projection) SAS imaging. A delay-and-sum SAS 
processor can construct an image sequentially, by adding the appropriate sample from the latest 
echo to a sum of sample values from previous echoes (one sample from each echo). Each of these 
echo samples presumably corresponds to the range of a specific point scatterer, as seen from 
different sensor locations. Hypothesized motion is represented by delay corrections that are 
inserted into the delay-and-sum SAS beam former. For the most recent echo, different motion 
hypotheses result in different "test images." The best test image corresponds to the best motion 
hypothesis. 

A criterion for choosing the best test image is obtained from the SAS point spread function or 
range, cross-range ambiguity function (RCRAF) in Section 4 (Figure 2).   The back projection 
SAS image is the convolution of the SAS RCRAF with the actual reflector distribution. In the 
frequency domain, the 2D or 3D Fourier transform of the RCRAF is multiplied by the 2D or 3D 
Fourier transform of the actual reflector distribution. The best image is obtained when the Fourier 
transform of the SAS RCRAF is constant, i.e., when the SAS RCRAF most resembles an impulse. 

If the most recent delay in the SAS delay-and-sum process is incorrect, a line that should go 
through the center of the asterisk in Figure 1 is displaced. The resulting SAS RCRAF is less 
impulse-like, and its mean-square bandwidth is reduced. Since the Fourier transform of the SAS 
image is the product of the actual reflectivity distribution with the Fourier transform of the 
RCRAF, the mean-square bandwidth of the SAS image is reduced when the image is formed with 
an incorrect version of the most recent delay. These observations imply that the best test image has 
the largest mean-square bandwidth. The mean-square image bandwidth can be computed from a 
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test image, without using a multidimensional Fourier transform. If u(x,y) is a test image, then its 
mean-square bandwidth is 

CO   00 CO   CO 

Bl = J \{\du(x,y)lck\2+\ai(x,y)lcy\2)kdyl \ j\u(x,yf dxdy . (20) 

The bandwidth is a measure of variation or image sharpness. 

A block diagram of an image-based tracker is shown in Figure 13. Delay corrections are 
utilized by a dynamic model that predicts the next delay hypotheses. This model can include sensor 
motion and translation/rotation of various parts of a moving target [43]. The image-based tracker 
has been demonstrated by using it to compensate for accidental range deviations during acquisition 
of echoes from a target that was suspended from a rotating platform by thin lines. The range 
deviations are caused by wobbling of the suspended target.   Image-based tracking has been tested 
further by deliberately introducing a spurious step discontinuity in range halfway through the 
imaging process. The results of these demonstrations are shown in Figures 14 and 15. 

19. Motion compensation, dynamic programming, and dynamic models 

Motion variability of a single point scatterer can be modeled as distortion of the predicted range 
vs time curve of the scatterer. If the hypothesized delay history of echoes from the point scatterer 
is adaptively modified to match the distortion, the resulting motion compensation is equivalent to 
adaptive focusing with a multi-pulse matched filter. 

A similar distortion problem arises in speech recognition. A phoneme in speech data is often a 
time warped version of a reference function corresponding to the same phoneme. The problem of 
classifying the distorted phoneme has been solved by dynamic programming [44]. This method is 
an efficient technique for sequential implementation of a likelihood function and is similar to the 
Viterbi algorithm for decoding communication signals [45,46]. The need for such efficiency can be 
appreciated by considering the number of different trajectories that are implied by a simple three 
alternative model; the target delay (or the delay of a phoneme sample) at a given sampling time is 
the same as the predicted delay or is slightly larger or smaller than the predicted value. Figure 16 
illustrates that there are three admissible trajectories (or phoneme time distortions) at time ti. Nine 
different admissible trajectories or time warps terminate on the five nodes at t2, twenty-seven such 
paths exist at t3, and 3n admissible trajectories reach the nodes at time t„. After n echoes or time 
samples, correlation of the delay history corresponding to each admissible trajectory with echo data 
and computation of the maximum correlator output will result in a receiver that is focused on an 
isolated point scatterer, despite the unpredictable delay perturbations. Unfortunately, 3n different 
reference functions are needed to form testable hypotheses for unpredictable perturbations (time 
warps) after n echo time samples. 
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Predict expected delay dn(x,y) correponding to each image pixel 
p(x,y) for the n* observed echo based on assumed geometry 

and previous delay corrections 

Consider perturbations ± A to the expected delay 
of the n* echo at each image pixel p(x,y) 

n-»n+l 
dn(x,y)-A dn(x,y) 

Sequentially 
construct a 
test image 

from echoes 
1,2,...,n 

dn(x,y)+A 

Sequentially 
construct a 
test image 

from echoes 
1,2,...,n 

Input n"1 echo 

Sequentially 
construct a 
test image 

from echoes 
1,2 n 

For each pixel p(x,y), choose the test image with the largest value of a 
local focus measure (mean-square bandwidth) at x,y. 

The corresponding best delay dbest(x,y) 
equals dn(x,y) -A or dn(x,y) or dn(x,y) +A. 

db«t(x,y) 

For the n* echo, 
the delay correction 

for pixel p(x,y) equals 
db«t(x,y) - dn(x,y) 

Sequentially construct the 
motion compensated SAS 
image from the best test 

images for echoes 1,... ,n. 

Estimate the motion of the sensor 
and of each part of the imaged target and environment, 
e.g., estimate translational and rotational motion using 
 a Kalman-like dynamic system model  

Obtain final image after N 
echoes and exit 

or 
continue image-based tracking 

Figure 13.   Sequentially formed test images indicate how well delays have been predicted and what 
corrections should be applied.  This flow diagram shows adaptive focusing operations for 
target/sensor motion compensation, image-based tracking, and SAR/SAS imaging of 
maneuvering targets. 
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Figure 14.   Sequential adaptive focusing of original echo data using test images. Wobble 
of the suspended target introduces a small range deviations. 

(a) Images obtained by applying conventional and adaptive focusing 

Conventional SAS image Adaptive autofocus 

(b) Adaptive range corrections applied to original echo data for best focus of target 
centroid. Different range corrections may be applied to other parts of the target. 

E 
~ 10 c 
o 

o o 
a> -10 
g>       0 
(O 

Adaptive range corrections applied to target centroid 

50 100       150       200       250       300       350       400 
aspect angle (degrees) 

30 



Figure 15. Sequential adaptive focusing of perturbed echo data using test images. 
Unpredicted sensor or target motion is simulated by artificially reducing range by 10 mm 
after the target is rotated by 200 degrees. 

(a) Images obtained by applying conventional and adaptive focusing. 

Conrentional SAS image Adaptive autofocus 

(b) Adaptive range corrections applied to echo data for best focus of the target centroid 
when range is artificially reduced by 10 mm after the target is rotated by 200 degrees. 
Different range corrections may apply to other parts of the target. 
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Computational complexity is greatly reduced by realizing that only the cumulative maximum 
correlator response is required at any given time. Suppose that each node in Figure 16 at time t„ is 
labeled with the maximum cumulative correlator response for all paths connecting to the node. For 
a given node, this maximum is the incremental increase in the correlator response for the range 
perturbation represented by the node, plus the largest cumulative correlator response for all nodes 
at the preceding sample time t„.i that are connected to the node. For an isolated point scatterer, the 
maximum cumulative correlator response at time t„ denotes the best model for the perturbed 
trajectory up to that time. Since the perturbations are admissible distortions in the hypothesized 
range vs time function for a moving point target, the maximum correlator response is proportional 
to the reflectivity of the point target. 

The trajectory of a given target point is of interest in order to determine what kind of maneuver 
was inferred by the adaptive focusing algorithm and to focus on reflecting points at intevals that 
are shorter than the overall processing time. This history can be estimated by tracing back from 
the node with largest cumulative correlator response at time t„ to the connected node with largest 
cumulative correlator response at time tn-i. The trace-back is continued by finding the connected 
node with largest cumulative correlator response at time tn.2, etc. 

For targets with multiple scattering points, the dynamic programming algorithm should not 
attempt to maximize cumulative correlator response, since a strongly reflecting point may be 
ephemeral as the target rotates. A more reliable performance measure is the peak-to-sidelobe ratio 
of the SAS range, cross-range ambiguity function or point spread function, which increases with 
the mean-square image bandwidth in (20). The image formation process is sequential, with each 
new transmitted pulse adding another increment to each pixel. The image after n pulses is the 
target reflectivity distribution convolved with an asterisk-shaped point spread function (RCRAF) 
with peak-to-sidelobe level equal to n. As this asterisk becomes more impulse-like with higher P/S, 
the image becomes less smeared, and the mean square bandwidth increases. The sharpness 
measure in (20) is thus expected to increase monotonically with n. This monotonic increase of the 
performance measure is required for dynamic programming [47,48]. A dynamic programming 
solution to the delay perturbation problem can use a mean-square bandwidth measure to represent 
the efficacy of delay compensation, and trajectories of target points can be chosen to maximize this 
image sharpness measure. 

Range 

Figure 16. Three admissible perturbations of the 
predicted range at each echo time-of - 
arrival yield a large set of admissible 
range vs. time functions. 

Time 
 ► 

to 
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The size of a test image should be as large as possible to provide a reliable measure of mean- 
square bandwidth. For maximum stability of the algorithm, the mean-square bandwidth focus 
measure should be computed over the whole target. If the target is rigid (or behaves as though it 
were rigid over the observation interval) the delay perturbation at any target point can be computed 
from the perturbations of pitch, roll, and yaw, i.e., from unpredictable rotations about the three 
axes that pass through the target center. Instead of three test images corresponding to no change in 
predicted delay, an admissible delay increment, and an admissible delay decrement, the algorithm 
must now compute twenty seven test images, corresponding to all possible combinations of no 
change, an admissible increment, and an admissible decrement of the predicted pitch, roll, and yaw 
angles. In each image, different target points have different delay corrections. If the target is 
contained within a cube of volume elements (voxels), then the hypothesized delay perturbation of 
each target point or voxel can be computed from the perturbations of pitch, roll, and yaw angles. 
Corrections to predicted pitch, roll, and yaw angles can be inferred from the test image with the 
largest mean-square bandwidth. 

A motion compensation decision at each node in Figure 16 can be obtained by computing 
different test images corresponding to proposed local delay corrections or equivalent roll, pitch, 
and yaw corrections. The test image with the largest mean-square bandwidth corresponds to the 
best local delay corrections, or the best proposed pitch, roll, and yaw correction. This criterion is 
based on the assumption that the 2D target distribution is the same for all test images. The only 
difference between the test images is the shape of the point spread function that is used to 
estimate them. The image after n echoes is sequentially constructed from the best test images for 
echoes 1, ...,n. 

The interpretation of delay perturbations in terms of pitch, roll, and yaw is convenient because 
these angles can be used as state variables in a dynamic model that describes target behavior. One 
version of the state equations is given by (21) for the x, y, and z components of the range to the 
target centroid and by (22) for 3-D target rotations.   Corrections to the predicted state vector in 
(21)-(22) are obtained from evaluation of the mean-square bandwidth of test images, and the 
corrected state vector is used to predict the next observation as in Kaiman filtering [49,50]. The 
dynamic model improves the prediction of individual pixel delays by computing these delays in the 
context of overall target motion. 
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20. Image models for motion compensation 

When dynamic programming is applied to speech recognition, admissible time warps 
correspond to constraints on the discrete delay choices in Figure 16. These admissible time warps 
are chosen in order to maximize the correlation of time-warped data with each phoneme in a set of 
reference phonemes. A classifier picks the reference phoneme that has maximum correlation with 
admissibly time-warped data. This process can be adapted to imaging by combining focusing with 
classification. Instead of using mean-square bandwidth to evaluate test images that correspond to 
different proposed range and rotation corrections, the test images are correlated with reference 
templates. The updated range and rotation estimates correspond to the energy normalized test 
image that has the largest correlation with a given reference image. A different sequence of 
admissible range and rotation corrections may be obtained for different reference templates. 
Correlation of each final, focused version of the image with the corresponding reference template is 
used to classify the target and to identify the range and rotation corrections that best describe the 
motion perturbations that occured during the imaging process. This modeling approach is similar 
to associative gradient descent in ART-SAS, where comparisons between predicted and observed 
echo data are used for tracking as well as for image synthesis. 

21. Image-based tracking and the 2D target distribution invariance assumption 

The utilization of test image bandwidth to make a decision at each node in Figure 16 and to 
choose the best test image at each iteration in Figure 13 assumes that the 2D target distribution in 
Figures 1 is the same for each test image at a given aspect angle. This assumption is circumvented 
when the SAS imaging algorithm is given the freedom to make local adjustments to the predicted 
delay of each image point. For a 3D target, parts of the target will lie above and/or below the 
image plane that is determined by target rotation relative to the sonar in Figure 1. The freedom to 
adjust the predicted delay for motion compensation can be interpreted as the freedom to move 
outside the image plane in Figure 1 by including elevation (z) changes. A sharpness measure such 
as mean-square bandwidth could be increased by moving outside the designated image plane as 
well as by finding the best delays to maximize the peak-to-sidelobe ratio of the point spread 
function. The delay-corrected image will have large mean-square bandwidth and will appear to be 
well focused, but it may not be identical to the 2D image that is formed without delay 
corrections, even when no corrections are needed. 

The monotonic increase of mean-square bandwidth in (20) with the number of pulses is not 
affected by focusing on points that are outside the original image plane, since such focusing occurs 
when the mean-square bandwidth is larger than in the original image plane. On a new 2D image 
surface, the algorithm can still place all the line segments in Figure 1 so as to intersect at a point, 
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yielding a sharp point spread function as in Figure 2.   Defocusing via smearing of the point spread 
function may be tolerated, however, in order to exploit an image on a different constant-z plane 
that has particularly large bandwidth when observed from a new aspect angle. If this situation 
occurs, then the estimated delay of each point, considered by itself, becomes an unreliable indicator 
of target motion at the point. The relation between the delay perturbation of a point and target 
motion at the point is known provided that delay perturbations are contained in the plane of target 
rotation. The relation becomes inaccurate when the estimated delay has an unknown out-of-plane 
z-component. This problem can be mitigated by using a 3D motion model as in (21)-(22) to 
hypothesize the delay of each point and to form the corresponding test images. 

Although very little motion compensation is needed in Figure 14, application of the image- 
based tracking algorithm has a large effect on the SAS image. This effect seems to be associated 
with the fact that the target is not planar; different parts of the target lie at different elevations. 
The algorithm automatically chooses a delay correction that corresponds to the elevation which 
maximizes the local focus criterion. Adaptive focusing extracts a maximally focused two- 
dimensional image from three dimensional target data. Conventional SAS is restricted to a single 
range-azimuth plane without the ability to vary elevation for best focus. 

In Figure 15, at an aspect angle of 200 degrees, the target suddenly "lurches" toward the 
sensor via a simulated delay purturbation, causing an unpredicted range decrease of 1 cm for all 
succeeding echoes. Comparison of the conventional SAS images in Figs. 14 and 15 indicates that 
the conventional image is smeared by the uncompensated motion, although the target is still 
recognizable. As expected, the adaptively focused images in Figs. 14 and 15 are nearly identical 
with and without the simulated motion perturbation of the sensor. The delay corrections in Figure 
15b, however, should represent the ten mm delay step that was used to deliberately degrade the 
data at 200 degrees, if delay corrections are assumed to occur in the original image plane. 
Comparison of Figures 14b and 15b, however, indicates that only part of the delay step is 
accounted for by delay compensation in Figure 15. This inconsistency is caused by the limited step 
size of the admissible delay correction at each observation, and by the fact that 3D delay 
corrections do not necessarily correspond to delays in the original 2D image plane. 

22. Summary of adaptive focusing and motion compensation via image-based tracking 

Mean-square image bandwidth is a measure of the peak-to-sidelobe ratio of the asterisk-shaped 
point spread function (the range, cross-range ambiguity function) of a SAS imaging system. This 
measure can be combined with a dynamic programming approach that evaluates test images in 
order to sequentially correct for delay perturbations. The corresponding algorithm has been tested 
with wideband sonar data.   Improvements and modifications of the basic algorithm include (i) a 
dynamic model for prediction of position-dependent delays and for maneuver estimation from test 
images and (ii) a SAS analogue to a time-warped speech classifier, where the SAS processor 
evaluates delay corrections in the context of various reference templates. Echo cross-correlation as 
in traditional motion compensation methods can be included in the focusing criterion, although 
counter-examples indicate that cross-correlation should not be used exclusively. The performance 
of the algorithm in multipath and other adverse conditions has not yet been tested, but further 
improvements are possible to cope with such conditions. For example, an animal can change depth 
so as to minimize multipath, and it can roll on its side so as to use binaural processing as an 
adaptive null-steering mechanism for multipath removal. 
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Other applications of the method include 

(i)   A SAR/SAS processor that can focus on moving targets; 
(ii)  Tracker design to avoid confusion caused by targets with scintillating multiple highlights or 

scattering centers; (An image-based tracker exploits these highlights to form a target image 
that is consistent with apparent changes in highlight locations.) 

(iii)  For medical ultrasound, large-array adaptive focusing in nonhomogeneous media and motion 
compensation for tracking and imaging blood flow and heart valves; 

(iv) Large-array adaptive focusing in nonhomogeneous media for seismic geophysical prospecting 
and imaging of landmines. 

23.   Biological feasibility of simplified SAS 

A Doppler tolerant, semicoherent, tomographic SAS model is comparatively simple to 
implement and thus appears to be feasible for animal sonar. For dolphins, the model can be 
completely noncoherent; echoes from a given scattering point are noncoherently summed as the 
animal moves. Massively parallel processing can be used to obtain similar noncoherent sums from 
many neighboring points, thus forming an image. For bats, a pulse compression operation is 
necessary, e.g., an operation as in (8) that may be equivalent to matched filtering or inverse 
filtering. A deconvolution process which is equivalent to inverse filtering can be implemented by 
applying top-down, bottom-up gradient descent to cochlear echo representations, as shown in 
Section 9. For semicoherent SAS, pulse compression is followed by envelope detection. After 
pulse compression, the bat model is the same as for dolphins. 

Evidence already exists for the capability of echolocating animals to form a noncoherent sum of 
echoes from a given scattering point, although more experiments are needed. Echo summation or 
integration capability can be inferred from dolphin target recognition experiments [51]. 
Summation also can be inferred from neurophysiological experiments on bats [52] in which the 
excitation threshold of a neuron is decreased by repeated stimulation of the neuron. If the neuron is 
modeled as a sequential likelihood ratio test for a particular stimulus in Gaussian noise [53], then 
the prior probability of the stimulus increases monotonically with the sum of preceding stimuli. 
For a Bayesian hypothesis test, an increase in the prior probability of the stimulus is associated 
with a decrease of the excitation threshold [54]. Echo summation is thus encoded as a decrease in 
neuronal threshold. The ability to concentrate on the same point in space as the animal moves is 
implied by range tracking neurons in bats [55,56]. 

As the animal moves, the ability to average the echo from each point seems to imply that a 
separate neuron is assigned to each image pixel, as in a topographic neuronal map like the ones 
found in the superior colliculus [37]. The relatively poor resolution of the superior colliculus map 
can be improved by a top-down, bottom-up gradient descent sharpening process, as discussed in 
Section 6. This improvement is not manifested in the map itself but in an interpretation of the 
map by a higher processing center. 

An important counter-argument for the existence of biological SAS is that high resolution 
topographic neuronal maps of reflectivity as a function of range and direction have yet to be 
discovered at higher processing centers in echolocating animals. There are several possible 
explanations for this missing observation: 
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1. Insufficient dimensionality may exist because of amplitude maps. Amplitopic representations 
have been found in the bat auditory cortex. A neuron's best amplitude varies monotonically 
with its physical position relative to other amplitude-specific neurons [55]. If an amplitopic 
representation is used for reflectivity in an acoustic image, then a map of reflectivity as a 
function of range, azimuth, and elevation requires four dimensions. Such a map cannot be 
constructed topographically with a three dimensional neuronal array. The brain is forced to 
use either a non-topographic representation or multiple maps that are different projections of a 
higher dimensional representation.   Range, azimuth, and elevation, for example, may be coded 
non-topographically as additional constraints to neuronal excitations within a population of 
amplitopically organized neurons. 

2. An advantage of a topographic map is that stimulus representations can be sharpened by 
localized lateral inhibition. Range/angle sharpening, however, also can be implemented via 
top-down, bottom-up gradient descent. Topographic maps are thus convenient but not 
necessary for obtaining better resolution. 

3. Images may be dynamically coded, such that a neuronal topographic map represents changes 
in an acoustic image rather than the image itself. Pulse-to-pulse jitter in the range and cross- 
range coordinates of a point scatterer, for example, may be represented topographically, while 
a point that does not move or scintillate between transmissions may not be represented. 
Range-rate and rate of angular change may be represented by ordered neuronal maps. 

4. A relevant map may be associated with (or projected onto) a different sensory modality such as 
vision or somatosensation. This type of projection or association is suggested by facial 
sensations that are experienced by blind people [57].   In this case, a visual or somatosensory 
map with comparatively high resolution is the top-down part of a top-down, bottom-up 
gradient descent sharpening process. Comparisons between predictions and data are made in a 
low resolution representation with registered spatial maps from different sensors, such as the 
superior colliculus. 

24.    Coherent SAS 

At present, there is insufficient evidence to conclude that bats or dolphins can perform coherent 
pulse-to-pulse integration, which is necessary for conventional, coherent SAS. Nevertheless, there 
is some motivation to consider coherent SAS. Bats are sensitive to a constant, frequency- 
independent echo phase shift [7,8], which is necessary but not sufficient for coherent SAS. 
Coherence implies that the SAS range, cross-range ambiguity function (RCRAF) is a coherent sum 
of rotated versions of the physical RCRAF of the sonar. In this case, the sonar RCRAF can be 
designed such that the SAS RCRAF has very high peak-to-sidelobe ratio, even with large angle 
increments (a small number of aspect angles and echoes). The required physical RCRAF 
corresponds to a particular set of signals that must be measured at various positions around the 
sonar transmitter. These signals resemble waveforms that have been measured around an 
echolocating dolphin [18,58]. 
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25. Summary and Conclusion 

A biological version of synthetic aperture imaging appears to be feasible, and it is advantageous 
for detection and classification of prey (e.g., finding buried fish). The simplifications and 
generalizations that are used to obtain a biological model lead to new insights and capabilities for 
man-made SAS systems. These capabilities include generalized trackers for range-extended 
targets, new kinds of acoustic images that represent various target features, the capability to obtain 
acoustic images with observations from relatively few aspects, and an associative gradient descent 
model that utilizes prior information or hypotheses for fast convergence to a global minimum. 
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APPENDIX A: Back Projection and Synthetic Aperture Processing 

In order to compare back projection with synthetic aperture imaging, it is helpful to review 
some properties of two-dimensional Fourier transforms. The first property is the expression for the 
2D Fourier transform in cylindrical coordinates. In Cartesian coordinates, the 2D Fourier 
transform is 

f(x,y) = (2TV)-
2
 J l^öJ^öJ^expC/Cö^x-ky)^^. (Al) 

In cylindrical (r,9) frequency domain coordinates, cox -r cos# , a  = r sin 0,   and 

F(o)x ,6)y) = Fir cos 6, r sin 9) = F^ (r, 6). (A2) 

Cylindrical (p,<|>) coordinates in the spatial domain are suchthat x = pcosfi, y = psinfi, and 

/(*,y) = f(pcos<f>, p sin <f>) s fvl (p, $). (A3) 

Substituting (A2) and (A3) into (Al), changing variables , and noting that the Jacobian of the joint 
change of variables a>x = rcos0 ,a>y =rsmO is 

dcoxfdr    ScOy/d- 

daJdO   dcOy/dO 

yields 

cos#       sin 6? 

-rsin#   rcosö = r (A4) 

nil   oo 

/g.;(A^) = (2^)"2 J  JF^^^expIjrp^os^cos^ + sinösin^Jrlßfr-^. (A5) 
-x/2 -to 

The desired expression for the 2D Fourier transform in cylindrical coordinates is obtained by using 
the identity 

cos#cos^ + sin#sin^ = cos(6-$) 

in (A5), which results in 

x/2   » 

feyl(pJ) = (27ty2 J  iF^ir&^VlJrpzosiO-ttrWde. 

(A6) 

(A7) 
-it/2 -<o 

Rotation of an image in the x,y plane corresponds to a similar rotation of the 2D Fourier 
transform of the image in the <ax,Oy plane. This property follows easily from (A7). Rotation in the 
x,y plane by y radians transforms f*cyi(p,<|>) to {^(p^+y). Replacing § by 4>+y on the right hand side 
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of (A7) and changing variables by letting 9'=9-y, the right side becomes the 2D Fourier transform 
ofFcyi(r,947). It follows that 

S#(p,W) oFcy.fcG+y) (A8) 

or 

f(xcosy-ysiny,ycosy+xsiny) <-»F(©xcosy-aysiny,QyCosy+<x>xsiny) (A9) 

where the double arrow indicates a 2D Fourier transform pair. 

Another property of 2D Fourier transforms is that the projection of f(x,y) onto the x-axis is the 
ID inverse Fourier transform of F(cox,0). The projection of f(x,y) onto the x-axis is 

00 

P0(x)=lf(xty)dy. (A10) 
-co 

Integrating 

00     CO 

/(*,v) = (2x)-2 J |F(^,^)exp[/(öjcx+ö>j')]c?6Jxc/ft)>, 
-CO   -CO 

with respect to y yields 

CO 00        CO 

P0(*) = \f(x,y)dy = (2^)_1 j jF((ox,coy)ex.y{jcoxx)8(coy)daxdcoy 
—CO —CO    —CO 

00 

= (2*-)-' JF((Dx,0)exp(j(oxx)d6)x (All) 
-co 

which is the ID inverse Fourier transform of F(ox,0). It follows that 

CO 

j P0(x)exp(-jcoxx)dx = F(a)x,0). (A12) 

The above projection property can be generalized to rotated versions of fl(x,y). Rotating f(x,y) 
by 9 radians yields 

f9(x,y) = f(xcos0-y sind, ycos9 + x sin 0). (A13) 
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It follows from (A9) that the 2D Fourier transform of fe(x,y) is a similarly rotated version of 
F(G>x,(»y): 

fg(x,y) <-> FeiPx'My) - F(o)x cos0-a>y sm0,coy cos0 + cox sinO). (A14) 

Letting Pe(x) denote the projection of fe(x,y) onto the x-axis, i.e., 

Pe(x)^lMx,y)dy, (A15) 
-00 

(A10)-(A12) imply that the ID Fourier transform of Pe(x) is Fe((ax,0). Using r instead of cox, 

00 

J Pe(x)Qxp(-jrx)dx = Fe(r,0) = F(r cos0,rsm0) = F^(r,0). (Al 6) 

The projection of a rotated version of the image f(x,y) can be Fourier transformed in one 
dimension to obtain the 2D Fourier transform of the image in cylindrical coordinates, evaluated 
along a constant-8 slice in the frequency domain. This result is known as the projection-slice 
theorem [9]. It implies that a sequence of projections of incrementally rotated images can be used 
to obtain a sequence of constant-8 slices of the 2D Fourier transform of the image in cylindrical 
coordinates. The image can be reconstructed from its projections by computing an inverse 2D 
Fourier transform in cylindrical coordinates, as in (A7). This form of reconstruction is known as 
back projection. 

To obtain a more explicit expression for the reconstructed image in terms of its projections, 
(A 16) is solved for Pe(x) by taking the inverse ID Fourier transform of both sides of the equation, 

OO 

P,(x) = (2*)-1 J F^r.QayUrxy*. (A17) 

A gradual high pass filter (similar to differentiation without the corresponding phase shift) can be 
applied to the projection, yielding 

00 

WO = W I Fvl(r,e)exp(jrx)\r\dr. (A18) 
-oo 

The integral on the right hand side of (A 18) is contained in the 2D inverse Fourier transform 
expression (A7) in the form 

00 

{2K)-' fF^(r,0)exp[>/>cos(0-^)]|7-kr = Pe.HP[pcos(0-<ß)). (A19) 
-co 

Substituting (A 19) into (A7) yields 
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«II 

UM) = (2*)-1 jpe,HP[p™s(e-<t>)]de. (A20) 
-nil 

The original image fcyi(p ,<|>) can be reconstructed by summing high-pass filtered projections. To 
obtain the image f(x,y) in Cartesian coordinates, recall from (A3) that 

fcyi(P,t) = f(p cos <f>,p sin <f>) = f(x,y) 

and from (A6) that 

cos(#-^) = cos#cos^ + sin#sin^.. 

It follows that (A20) can be written 

«11 

f(pcos<f>,psm<fi) = (27r)~1 ] PgHP[(pcos<f>)cos0 + (psiruß)sin0]d0 (A21) 
-nil 

or 
«11 

f(x,y) = (2nyl jP6HP(xcos0+ysin0)d0. (A22) 
-«12 

Back projection algorithms typically utilize the projection-slice theorem to obtain the 2D Fourier 
transform of the image in cylindrical coordinates. The image is then reconstructed via a 2D inverse 
Fourier transform operation. The equivalent expression in (A22), however, is useful for 
illustrating the similarity between back projection and synthetic aperture processing. 

For radar/sonar/ultrasound processing, suppose that a transducer is placed on the negative x- 
axis. A target is rotated about the origin of the coordinate system, and the range is defined to be 
zero at the center of rotation. Projections of the target are obtained by rotating the target clockwise 
and recording reflectivity vs range (A-scan) data at each rotation after filtering to obtain an 
estimate of the target impulse response, e.g., matched filtering. The integration surfaces for each 
projection correspond to points with constant delay, e.g., spherical shells. The thickness of the 
integration surfaces or shells are determined by the range resolution cell of the system , i.e., by the 
system bandwidth. 

To track a point on the target with initial position (x,y), the matched filtered echo (A-scan) from 
the target is evaluated at range xcos9+ysin9 as the target is rotated. Equation (A22) describes a 
sum of high pass, matched filtered echoes from the point on the target at initial position (x,y) as the 
target is rotated. 

The same A-scan data can be obtained by moving the transducer in a circle around the target, or 
by using a large array of transducers that are arranged in a circle with the target at the center. The 
second alternative is an actual array, while the first is a synthetic array. The array is focused on a 
target point by delay-and-sum beam forming. Consider a transducer that is located on a circle, 8 
radians counterclockwise relative to the negative x-axis. A signal is transmitted toward the target 
from this transducer, and the resulting echo is received by the same transducer and matched filtered 
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or otherwise processed to estimate target impulse response. The contribution of this filtered 
transducer output to the beam former image of the target point at x,y is a sample of the matched 
filtered echo. This sample is chosen to correspond to the range of the target point, i.e., to a range 
of xcos9+ysin0 when range zero is at the center of the circle . The delay-and-sum beam former 
for the real or synthetic array approximates the integral in (A22) by a finite sum over a sequence of 
aspect (6) values. Such a finite sum approximation is also used in back projection. If the matched 
filtered echoes are high pass filtered by using a filter with transfer function |o|, delay-and-sum 
synthetic aperture imaging and back projection are equivalent processes. 

One way to exploit the equivalence of SAS and BP is to form a 3D image when the transducer is 
above the plane of rotation. If the transducer is located above the negative x-axis such that the line 
between the transducer and the origin forms an angle a relative to the negative x-axis, and if the 
target is in the far field of the transducer, then (A22) becomes 

nil 

f{x,y,z) = (2n)~] ] PeHP[(xcos0 + ysmO)cosa-zsina]d0. (A23) 
-it/2 
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Appendix B: Cross correlation of proportional bandwidth spectrograms for wide-band 
signal processing 

Proportional bandwidth spectrogram analysis is closely related to wavelet analysis. Two 
signals Uj(t) and u2(t) may represent a received signal and a reference function or the input signals 
at the two ears. In either case, the first goal is to cross correlate the two signals when the signals 
are represented by phase-sensitive outputs of two proportional bandwidth spectrogram analyzers. 

As in the narrow-band, constant-bandwidth case, the signal cross-correlation function can be 
obtained by cross-correlating the outputs of corresponding spectrogram filters in time and then 
summing the resulting cross-correlation functions over all the filters. The phase-sensitive 
spectrograms that are generated by proportional bandwidth filters are 

00 

sn(t,cc) = axn \lJn{a)V{(olayMd(o ,  n=l,2. (Bl) 

Cross correlating the two spectrograms in time at each a-value (cross correlating corresponding 
filter outputs) and summing over all the filters yields 

00 00 

\da \dt[sx(t,a)s'2{t + r,a)] = \ux(co)Ul(co)[\a'\V(<o I af da]e-jondco (B2) 
0 -oo -oo 0 

where a change of variables in the a-integral yields 

J a" \V(a> I af da = j^^-dx & Cv (B3) 
0 o       x 

as in wavelet analysis [64].   It follows that 

00 00 

\da \dt[Sl (t, a)s*2 (t + T, a)] = CvRUiUi (r) (B4) 
0 -oo 

where 

00 

KlU2(r)=jul(t)u;(t-T)dt (B5) 
-00 

is the desired phase-sensitive cross-correlation function between the two input signals. 
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Another version of proportional bandwidth spectrogram analysis utilizes spectral distortion 
defined by 

UB{fo) = U{em). (B6) 

Since exp(co) varies between zero and infinity, it is assumed that U(a>) is analytic, and thus has 
support only for nonnegative frequencies. The mapping in (B6) automatically performs pulse 
compression on signals that have a logarithmic frequency domain phase function exp[-jklog(co)]. 
The corresponding time signals before pulse compression have linear period modulation and 
hyperbolic frequency modulation, and they resemble the echolocation signals of many bats. 

The phase-sensitive spectrogram for signal and filter functions that are spectrally distorted as in 
(B6) is [65] 

oo 

sUsVi (/.loga) = \UE{\ogco)VE(\og(o - log«)**log<V(log<y) (B7) 

where 

UEQogO)) = U(co) (B8) 

and 

VE (log G> - log a) = V(a>/a). (B9) 

Cross correlation of two such time-frequency representations yields 

00 00 

\d\o%a\dt[sUErE (t,\oga)s*UEiVE {t + r,loga)] 
-co -co 

00 CO 

= \ua Oqg«X4(lcg<y)[ JFE(logö;-lcga)|2 dlogccY^dlogco 
-CO —CO 

= EyRU£iUJr) (BIO) 

where Ev is the filter energy and Ra u   (r) is the cross correlation function of the spectrally 

distorted input signals. 

The phase-insensitive, squared-envelope spectrogram is obtained by envelope detecting the 
outputs of the filter bank; 

00 

SUgVE(Moga) =| jUE(logo))VEQogco-loga)ejnos<ad(\ogü)f . (Bl 1) 
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From (11), cross correlation of two magnitude-squared spectrograms yields 

00   CO oo   oo 

I \suMrn (t'OWu.rn (' + T,a)dtd(D = j \\XuEivsl (U(ot\XvtlvE1 it + r,a)\2 dtdco 
—CO-CO —CO-CO 

(B12) 
wherein v   (t,0))\2 is the magnitude-squared version of the narrowband ambiguity function 

CO 

%UliUl2(t,6))= jU^co^Ul^co' -o))exp(-jco't)do)'. (B13) 
-co 

Solving (B12) for \xv v   (t,0))f via the iterative procedure in Figure 8 yields 

\ZvnvJr,0f =\RUEiUJrf, (B14) 

the squared envelope of the cross-correlation function of the spectrally distorted input signals. As 
in the constant-bandwidth case, cross correlation of proportional bandwidth spectrograms can be 
used for pulse compression. 
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